

M-200

Rejestrator danych

INSTRUKCJA OBSŁUGI

Wersja opracowania: 2012-06-15

Instrukcja obsługi dostępna jest również w wersji elektronicznej na płycie CD.

Informacja o bezpieczeństwie

Warunkiem bezpiecznego zainstalowania oraz użytkowania przyrządu jest stosowanie się do zaleceń instrukcji obsługi.

Niewłaściwa instalacja przyrządu może prowadzić do zagrożenia życia lub zdrowia użytkowników.

Urządzenie zostało wyprodukowane zgodnie z wymogami dyrektyw Unii Europejskiej.

Urządzenie to nie może być instalowane w strefach zagrożonych wybuchem.

Informacja producenta

Producent zastrzega sobie prawo do dokonywania zmian niektórych funkcji przyrządu.

CE

Przyrząd spełnia wymagania EMC - "Kompatybilność elektromagnetyczna dla urządzeń przemysłowych" zgodnie z dyrektywą 2004/108/EEC.

SPIS TREŚCI

1	Fu	nkcje	e przyrządu	5
	1.1	Prz	zeznaczenie przyrządu	5
	1.2	We	ersje urządzenia	5
	1.3	Ro	dzaje wejść pomiarowych	5
	1.4	Wy	świetlacz, diody sygnalizacyjne, przyciski funkcyjne	5
	1.4	.1	Wyświetlacz	5
	1.4	.2	Diody	6
	1.4	.3	Przyciski funkcyjne	6
	1.5	Fur	nkcje alarmowo-sterujące	7
	1.6	Rej	jestracja wyników pomiarów	7
	1.6	.1	Kopiowanie danych do przenośnej pamięci masowej	7
	1.6	.2	Sterowanie pracą archiwum z klawiatury przyrządu	8
	1.7	Pra	aca w komputerowym systemie pomiarowo-sterującym	9
	1.7	.1	Serwer WWW	9
	1.8	Ws	półpraca przyrządu z drukarką	9
	1.9	Akt	ualizacja oprogramowania rejestratora	10
2	Мо	ntaż	i podłączenie	11
	2.1	Мо	ntaż mechaniczny	11
	2.2	Мо	ntaż elektryczny rejestratora	11
	2.2	.1	Podłączenie zasilania	11
	2.2	.2	Podłączenie przetworników do wejść analogowych	12
	2.2	.3	Podłączenie przetwornika do wejścia typu PULS	13
	2.2	.4	Podłączenie odbiorników do wyjść dwustanowych	14
	2.2	.5	Podłączenie linii transmisji danych RS485 (wyłącznie M-200-0)	14
	2.2	.6	Podłączenie drukarki do portu RS232 (wyłącznie M-200-1)	14
	2.2	.7	Port USB	14
	2.2	.8	Port Ethernet	14
	2.3	Koi	nfiguracja zwór wewnątrz przyrządu	14
	2.3	.1	Konfiguracja zwór związanych z wejściami analogowymi	15
	2.3	.2	Konfiguracja zwór związanych z wejściem typu PULS	16
	2.3	.3	Konfiguracja zwór związanych z terminacją magistrali RS485	16
3	Us	tawie	enia	18
	3.1	Pro	ogramowanie ustawień	19

M-200

	3.1	.1	Ustawienia globalne	20
	3.1	.2	Ustawienia wyjść przekaźnikowych (RL)	21
	3.1	.3	Ustawienia portu RS485	22
	3.1	.4	Ustawienia portu RS232 oraz współpraca z drukarką	22
	3.1	.5	Ustawienia portu Ethernet	23
	3.1	.6	Ustawienia wejść pomiarowych	23
	3.1	.7	Progi alarmowo-sterujące	29
	3.1	.8	Ustawienia archiwizacji	30
	3.1	.9	Programowanie przyrządu	31
	3.2	Ust	tawianie daty i czasu w przyrządzie	32
4	Те	st od	lczytu wyników pomiarów	33
5	Pro	ograr	mowanie przyrządu przy wykorzystaniu pamięci USB	34
6	Da	ne te	echniczne	35
7	Wy	/posa	ażenie i akcesoria	39
	7.1	Wy	posażenie podstawowe przyrządu	39
	7.2	Wy	posażenie dodatkowe przyrządu	39
8	Po	dmic	ot wprowadzający produkt na rynek UE	40
9	Pro	otokć	ół transmisji Modbus RTU / Modbus TCP 🧭	45
	9.1	Pai	rametry transmisji szeregowej dla Modbus RTU	45
	9.2	Ust	tawienia portu Ethernet dla Modbus TCP	45
	9.3	Od	czyt i zapis ustawień przyrządu	45
	9.3	5.1	Funkcja 03 – Read Holding Registers	45
	9.3	.2	Funkcja 06 – <i>Write Single Register</i>	46
	9.3	.3	Funkcja 16 – Write Multiple Registers	46
	9.3	.4	Mapa rejestrów do odczytu / zapisu ustawień przyrządu	47
	9.4	Od	czyt wyników bieżących	47
	9.4	.1	Funkcja 04 – <i>Read Input Registers</i>	47
	9.4	.2	Mapa rejestrów do odczytu wyników bieżących	47
	9.5	Pol	lecenie diagnostyczne	48

Rozdziały instrukcji oznaczone symbolem 📀 znajdują się wyłącznie w elektronicznej wersji na płycie CD-ROM dostarczanej wraz z przyrządem.

1 Funkcje przyrządu

1.1 Przeznaczenie przyrządu

Rejestrator M-200 może być stosowany jako autonomiczny przyrząd pomiarowy lub jako element przemysłowych systemów pomiarowych. Przyrząd zasilany jest napięciem 24 V AC/DC, obudowa umożliwia montaż urządzenia w szafach pomiarowych.

1.2 Wersje urządzenia

Przyrząd występuje w dwóch wersjach:

- *M-200-0* urządzenie posiada port komunikacyjny RS485;
- *M-200-1* urządzenie posiada port RS232 do współpracy z drukarką Mini PLUS.

1.3 Rodzaje wejść pomiarowych

Urządzenie posiada trzy wejścia pomiarowe: dwa wejścia analogowe oraz jedno wejście typu PULS.

Do wejść analogowych możliwe jest podłączanie następujących czujników/przetworników:

- RTD (2-,3- lub 4-przewodowo, Pt100, Pt200, Pt500, Pt1000),
- termoelementów (typu R, S, B, J, T, E, K, N),
- przetworników z wyjściem napięciowym, zakres -10 V ÷ +10 V,
- przetworników z wyjściem rezystancyjnym, zakres 0 k Ω \div 5 k Ω , (2-, 3- lub 4-przewodowo),
- przetworników z wyjściem w standardzie pętli prądowej 0/4-20mA.

Uwaga!

W przypadku czujników / przetworników wymagających podłączenia 3- lub 4-przewodowego możliwe jest podłączenie tylko jednego przetwornika.

Uwaga!

W przypadku przetworników / czujników podłączanych 2-przewodowo organizacja układów wejściowych umożliwia jednoczesne podłączenie dwóch przetworników.

Uwaga!

Kompensacja temperatury spoiny odniesienia termopar (tzw. zimnych końców) odbywa się automatycznie za pomocą wewnętrznego czujnika temperatury.

Do wejścia typu PULS można podłączyć przetworniki z wyjściem impulsowym typu styk bierny lub tranzystor OC o częstotliwości w zakresie 0,001 Hz do 10 kHz.

1.4 Wyświetlacz, diody sygnalizacyjne, przyciski funkcyjne

1.4.1 Wyświetlacz

Urządzenie posiada pięciocyfrowy wyświetlacz LED. Dostępne są trzy kolory wyświetlania: zielony, pomarańczowy, czerwony. Na wyświetlaczu przyrządu wyświetlane są wyniki pomiarowe dla każdego wejścia oraz informacja o dacie i godzinie. Dla każdego wejścia pomiarowego użytkownik może skonfigurować indywidualnie kolor wyświetlania, może on ulegać zmianie gdy przekroczony zostanie próg alarmowy przypisany do danego

wejścia. Data i godzina wyświetlane są w kolorze zielonym. Szczegółowa konfiguracja kolorów wyświetlania opisana jest w rozdziałach 3.1.6 oraz 3.1.7.

1.4.2 Diody

Urządzenie posiada 6 diod sygnalizacyjnych:

- REC dioda związana z archiwizacją danych w przyrządzie,
- USB dioda związana z gniazdem USB i wymianą danych pomiędzy rejestratorem a pamięcią przenośną,
- BATT nie używana,
- grupa diod 1, 2, 3 wskazują, wartość z którego wejścia jest aktualnie wyświetlany.

Dioda	Co jest sygnalizowane?	W jaki sposób?
	archiwizacja wyłączona	dioda nie świeci
REC	archiwizacja włączona	dioda świeci w kolorze zielonym, mignięciami w kolorze pomarańczowym sygnalizowany jest zapis kolejnego rekordu danych
	błąd archiwum	dioda pulsuje w kolorze czerwonym
	brak pamięci przenośnej (pendrive) w gnieździe USB bądź rejestrator nie wykrył pamięci włożonej do gniazda USB	dioda nie świeci
USB	przenośna pamięć znajduje się w gnieździe USB	świecenie diody w kolorze zielonym
	trwa wymiana danych pomiędzy rejestratorem a pamięcią przenośną	świecenie diody w kolorze pomarańczowym
1, 2, 3	aktualnie wyświetlana jest wartość z kanału odpowiednio 1, 2, 3	świecenie odpowiedniej diody w kolorze zielonym
	wyświetlana jest data lub godzina	żadna dioda nie świeci

Uwaga!

W trakcie przenoszenia danych miedzy rejestratorem a pamięcią przenośną nie należy wyciągać jej z gniazda USB. Grozi to utratą danych.

1.4.3 Przyciski funkcyjne

Przyrząd posiada dwa przyciski na płycie czołowej

• 1-2-3,

• USB REC

oraz jeden przycisk z tyłu obudowy: REC.

Przycisk	Działanie
	krótkie naciśnięcie przycisku powoduje wyświetlenie kolejnej wartości (kanały wyłączone nie są wyświetlane): IN1 \rightarrow IN2 \rightarrow IN3 \rightarrow godzina \rightarrow data (dzień i miesiąc) \rightarrow data (rok)
1-2-3	długie naciśnięcie przycisku (aż do usłyszenia sygnału dźwiękowego) powoduje przejście w tryb automatycznego wyświetlania kolejnych wartości pomiarowych (kanały wyłączone nie są wyświetlane): IN1 \rightarrow IN2 \rightarrow IN3; jeżeli żaden kanał nie jest włączony wyświetlana jest godzina
	jeżeli wystąpiło przekroczenie alarmowe to krótkie naciśnięcie przycisku powoduje potwierdzanie tego przekroczenia; pierwsze naciśnięcie przycisku powoduje potwierdzenie alarmów przypisanych do wyjścia RL1 (o ile wystąpiły), drugie – alarmów przypisanych do wyjścia RL2 (o ile wystąpiły)
USB/REC	Jeżeli w gnieździe USB nie znajduje się pamięć przenośna długie przyciśnięcie przycisku (aż do usłyszenia sygnału dźwiękowego) powoduje włączenie / wyłączenie archiwizacji (sterowanie pracą archiwum za pomocą tego przyrządu może być wyłączone, patrz rozdział 3.1.8).
	Jeżeli w gnieździe USB nie znajduje się pamięć przenośna krótkie naciśnięcie przycisku powoduje

rozpoczęcie/zakończenie drukowania (dotyczy tylko M-200-1).

Jeżeli w gnieździe znajduje się pamięć przenośna krótkie naciśnięcie przycisku powoduje rozpoczęcie kopiowania pliku archiwum (patrz rozdział 1.6.1).

Jeżeli w gnieździe znajduje się pamięć przenośna długie przyciśnięcie przycisku (aż do usłyszenia sygnału dźwiękowego) pozwala zaprogramować przyrząd ustawieniami zapisanymi w pamięci przenośnej (patrz rozdział 5) oraz wymienić firmware przyrządu (patrz rozdział 1.8).

Jeżeli w gnieździe USB nie znajduje się pamięć przenośna długie przyciśnięcie przycisku (aż do usłyszenia sygnału dźwiękowego) powoduje włączenie / wyłączenie archiwizacji.

REC Jeżeli w gnieździe znajduje się pamięć przenośna krótkie naciśnięcie przycisku powoduje rozpoczęcie kopiowania pliku archiwum (patrz rozdział 1.6.1).

Jeżeli w gnieździe znajduje się pamięć przenośna długie przyciśnięcie przycisku (aż do usłyszenia sygnału dźwiękowego) pozwala zaprogramować przyrząd ustawieniami zapisanymi w pamięci przenośnej (patrz rozdział 5) oraz wymienić firmware przyrządu (patrz rozdział 1.8).

1.5 Funkcje alarmowo-sterujące

Dla każdego kanału (wejścia) pomiarowego można ustawić po dwa progi alarmowosterujące. Każdy z progów może być skonfigurowany jako:

- górny przekroczenie przy wzroście wartości ponad ustalony limit
- dolny przekroczenie przy spadku wartości poniżej ustalonego limitu

Dla każdego progu indywidualnie ustawia się poziom alarmu oraz histerezę. Przekroczenie może być przypisane do jednego z dwóch przekaźników wyjściowych, może również powodować zmianę częstości archiwizacji oraz zmianę koloru wyświetlania wyniku na wyświetlaczu przyrządu.

Każdy z przekaźników wyjściowych może pracować w dwóch trybach:

- sygnalizacyjnym oznacza pobudzanie przekaźnika (ciągłe lub cykliczne), a powrót następuje po potwierdzeniu przekroczenia przyciskiem 1-2-3 na płycie czołowej;
- sterującym umożliwia realizację prostego sterowania włącz / wyłącz.

1.6 Rejestracja wyników pomiarów

Archiwizacja wyników odbywa się w wewnętrznej pamięci danych przyrządu o pojemności 2GB. Częstość zapisu może być wybrana skokowo w zakresie od co 1 s do 1h. Możliwe jest skonfigurowanie dwóch prędkości archiwizacji (prędkość II uruchamiana jest po przekroczeniu wybranych progów alarmowo-sterujących).

1.6.1 Kopiowanie danych do przenośnej pamięci masowej

W zależności od ustawień dane kopiowane są do pamięci przenośnej w postaci plików zawierających dane dzienne bądź miesięczne. Przyrząd nadaje kolejnym plikom unikalną nazwę: *IDrrmmdd.dat*, gdzie:

- ID ID przyrządu, pozwala łatwo rozróżnić pliki danych pochodzące z różnych przyrządów;
- *rrmmdd* data ostatniego rekordu w danym pliku, rr rok, mm miesiąc, dd dzień.

Aby skopiować dane należy umieścić przenośną pamięć (pendrive) w gnieździe USB przyrządu. Wykrycie pamięci przez przyrząd zostanie zasygnalizowane świeceniem diody USB w kolorze zielonym, a na wyświetlaczu pojawi się napis widoczny na Rys. 1.1 gdzie numer pliku danych wynosi -00.

numer pliku z danymi

zapalanie kropek sygnalizuje postęp kopiowania danych Rys. 1.1 Widok wyświetlacza przyrządu gdy w gnieździe USB znajduje się pamięć przenośna

Krótkie naciśnięcie przycisku USB REC spowoduje rozpoczęcie kopiowania pliku do katalogu głównego pamięci przenośnej. W trakcie przenoszenia danych dioda USB świeci w kolorze pomarańczowym, postęp kopiowania jest zaś sygnalizowany zapalaniem kolejnych kropek w dolnej części wyświetlacza.

Uwaga!

Długie naciśnięcie przycisku USB REC może spowodować zaprogramowanie przyrządu nowymi ustawieniami, szczegóły w rozdziale 5 bądź zainstalowanie nowego firmware w przyrządzie szczegóły w rozdziale 1.8.

Uwaga!

W trakcie przenoszenia danych miedzy rejestratorem a pamięcią przenośną nie należy wyciągać jej z gniazda USB. Grozi to utratą danych.

Po zakończeniu kopiowania pliku numer -xx dioda USB zacznie ponownie świecić w kolorze zielonym, a przyrząd zasygnalizuje gotowość do przekopiowania pliku zawierającego dane z wcześniejszego okresu wyświetlając napis widoczny na Rys. 1.1 gdzie numer archiwum wynosi -(xx+1). Krótkie przyciśnięcie przycisku USB REC spowoduje rozpoczęcie kopiowania kolejnego pliku.

Jeżeli wszystkie potrzebne dane zostały już skopiowane należy wyciągnąć pamięć przenośną z gniazda USB, upewniając się wcześniej, że dioda USB nie świeci się w kolorze pomarańczowym.

Przykład:

Jeżeli przyrząd został skonfigurowany tak aby dane kopiowane były w postaci plików miesięcznych, to aby skopiować dane z poprzedniego miesiąca konieczne jest skopiowanie najpierw danych z bieżącego miesiąca (partia danych numer -00), a następnie dopiero danych z poprzedniego miesiąca (partia danych numer -01). Jeżeli przyrząd zostałby wcześniej skonfigurowany tak by dane kopiowane były w postaci plików dziennych kopiowanie danych z poprzedniego miesiąca wymagałoby wielokrotnego naciskania klawisza USB REC, co byłoby dość niewygodne. W podobnej sytuacji korzystniejsza może okazać się zmiana ustawień przyrządu.

1.6.2 Sterowanie pracą archiwum z klawiatury przyrządu

Sterowanie pracą archiwum z klawiatury przyrządu możliwe jest jedynie wtedy gdy w gnieździe USB nie znajduje się pamięć przenośna. Długie naciśnięcie jednego z przycisków USB REC (na płycie czołowej) bądź REC (na płycie tylnej) powoduje włączenie bądź wyłączenie archiwizacji, przy czym działanie klawisza USB REC może być zablokowane (patrz rozdział 3.1.8).

1.7 Praca w komputerowym systemie pomiarowo-sterującym

Przyrząd posiada następujące niezależne od siebie porty komunikacyjne:

- RS485 z protokołem Modbus RTU (wyłącznie w wersji M-200-0),
- Ethernet z protokołem Modbus TCP i serwerem WWW.

Opis protokołów Modbus RTU oraz Modbus TCP (dostępne funkcje, mapy rejestrów) znajduje się w rozdziale 9.

1.7.1 Serwer WWW

Z serwerem WWW przyrządu można połączyć się przy użyciu standardowej przeglądarki internetowej. W tym celu wystarczy w pasku adresu przeglądarki wpisać adres IP urządzenia. Serwer WWW umożliwia podgląd wyników bieżących oraz pobieranie danych archiwalnych z przyrządu. Strona powinna być wyświetlana poprawnie w przeglądarkach Internet Explorer, Mozilla Firefox, Chrome, Opera i Safari (mogą wystąpić niewielkie różnice w wyglądzie strony).

	and the	S.I.F.	E		X
← → C ↑ ③ 77.252.242.112:86				☆	20
M-200 Ega	zemplarz test	towy	m	APARATURA KONTROLNO - P OMIAROWA www.metronic.pl	
WERU.	IN 1	24 355		теоја ороднатотала, к ко	
		24.333			
	IN 2:	25.345			
	IN 3:	0.000			
	Temp. wew	vn.: 39.200			
Archiwum:					
Od: 2012-06-09 << Czerwiec 20 Pn Wt Sr Cz P 1 4 5 6 7 8 11 12 13 14 1 1 1 20 21 25 26 27 28 25 26 27 28 25 26 27 28 25 26 27 28 28 29 20 20 20 20 20 20 20 20 20 20	12 So Nd 2 3 9 10 5 16 17 2 23 24 9 30	Do: 2012-06-09	Pobierz		

Rys. 1.2 Serwer WWW

1.8 Współpraca przyrządu z drukarką

W wersji M-200-1 urządzenie posiada port RS232 umożliwiający współpracę przyrządu z drukarką (konfiguracja wydruku znajduje się w rozdziale 3.1.4).

Aby wydrukować dane należy krótko nacisnąć przycisk USB/REC, drukowanie będzie trwać aż do ponownego krótkiego naciśnięcia przycisku USB/REC.

M-200 v1.06 12170002 TEST NAGLOWKA METRONIC AKP Krakov ul. Wybickiego 7 2012-06-11 15:20:00 39.803 996.82 RN7 2012-06-11 15:19:30 20.088 996.82 R67 2012-06-11 15:19:00 22.616 996.82 R07 ROZ 2012-06-11 15:18:30 26.029 996.81 ROZ 2012-06-11 15:18:00 30.635 996.81 2012-06-11 15:17:30 36.848 996.81 **R07** 2012-06-11 15:17:00 45.228 996.81 RN7 2012-06-11 15:16:30 56.535 996.81 R07 2012-06-11 15:16:00 71.789 996.81 RN7 2012-06-11 15:15:30 89.769 996.81 RN7 2012-06-11 15:15:00 86.171 996.81 ROZ 2012-06-11 15:14:30 81.316 996.81 ROZ 2012-06-11 15:14:00 74.768 996.80 RNZ

Rys. 1.3 Przykładowy wydruk

1.9 Aktualizacja oprogramowania rejestratora

Aktualna wersja oprogramowania przyrządu:

- jest widoczna tuż po uruchomieniu przyrządu na jego wyświetlaczu,
- można ją odczytać przy użyciu programu M-200.exe (patrz rozdział 3.1.1),
- jest wyświetlana przez serwer WWW urządzenia (patrz rozdział 1.7.1), Wersja firmware jest też umieszczana na naklejce przyrządu.

Wymiana firmware przyrządu odbywa się przy użyciu pamięci przenośnej typu pendrive. Plik zawierający oprogramowanie należy skopiować do katalogu głównego pamięci przenośnej i umieścić ją w gnieździe USB przyrządu. Następnie należy długo (aż do usłyszenia sygnału dźwiękowego) przytrzymać klawisz USB REC, spowoduje to rozpoczęcie wymiany oprogramowania (dioda USB świeci w kolorze pomarańczowym). Po zainstalowaniu firmware przyrząd zostanie ponownie uruchomiony.

Uwaga!

Zbyt krótkie naciśnięcie przycisku USB REC spowoduje rozpoczęcie kopiowania danych z archiwum, szczegóły w rozdziale 1.6.1.

Uwaga!

W trakcie przenoszenia danych miedzy rejestratorem a pamięcią przenośną nie należy wyciągać jej z gniazda USB. Grozi to utratą danych.

Jeżeli w katalogu głównym znajdował się również plik z ustawieniami (m-200.par bądź M-200.par, patrz rozdział 5), to przyrząd najpierw zostanie zaprogramowany nowymi ustawieniami, a następnie wymieniony zostanie jego firmware.

2 Montaż i podłączenie

2.1 Montaż mechaniczny

Obudowa przyrządu przystosowana jest do montażu panelowego.

Wymiary obudowy (szerokość x wysokość x długość): 96 mm x 48 mm x 100 mm.

Wymiary wycięcia w panelu (szerokość x wysokość): 92^{+08} mm x $45^{+0,6}$ mm.

W celu zapewnienia swobodnego montażu elektrycznego zalecane jest pozostawienie z tyłu przyrządu dodatkowej wolnej przestrzeni ok. 30 mm.

Uwaga!

Przyrząd powinien być tak zamontowany, aby nie był narażony na bezpośrednie nagrzewanie od innych urządzeń.

Uwaga!

Należy dążyć do takiego zamontowania przyrządu, aby praca elementów o dużym poziomie emisji zakłóceń (styczniki, przekaźniki mocy, falowniki) nie zaburzała pracy miernika.

2.2 Montaż elektryczny rejestratora

Rys. 2.1 Płyta tylna przyrządu M-200

Wszystkie obwody elektryczne doprowadzone są do rozłącznych śrubowych listew zaciskowych, umożliwiających podłączenie przewodów o przekroju do 1.5 mm².

2.2.1 Podłączenie zasilania

Rejestrator może być zasilany napięciem:

- stałym: 10 VDC ÷ 30 VDC,
- przemiennym: 24 VAC, +5% / -20%.

Rys. 2.2 Podłączenie zasilania

Zacisk oznaczony PE zaleca się podłączyć do listwy odniesienia potencjału szafy pomiarowej.

W przypadku zasilania przyrządu napięciem stałym nie ma znaczenia biegunowość napięcia zasilania, jednakże zaleca się podłączenie tak jak na Rys. 2.2.

Rejestrator posiada bezpiecznik polimerowy, który przerywa obwód zasilania w przypadku wystąpienia awarii. Po ustaniu zwarcia bezpiecznik powraca do stanu normalnego po kilku minutach.

2.2.2 Podłączenie przetworników do wejść analogowych

Uwaga!

Podłączenie czujnika lub przetwornika danego typu może wymagać przełączenia zwór wewnątrz przyrządu. Szczegóły w rozdziale 2.3.

W przypadku czujników 2-przewodowych możliwe jest dowolne łączenie różnego typu czujników na poszczególnych wejściach, np. wejście pierwsze: czujnik RTD 2-przewodowy, wejście drugie: przetwornik 4-20mA.

Rys. 2.3 Przykład podłączenia czujników różnego typu

2.2.3 Podłączenie przetwornika do wejścia typu PULS

Przyrząd posiada jedno wejście typu PULS (IN3), można do niego podłączyć przetworniki z wyjściem typu styk bierny lub tranzystor w konfiguracji OC.

Rys. 2.4 Podłączenie przetwornika do wejścia IN3

2.2.4 Podłączenie odbiorników do wyjść dwustanowych

Przyrząd posiada dwa przekaźniki elektroniczne o obciążalności 100mA / 60V.

Rys. 2.5 Podłączenie odbiorników do wyjść przekaźnikowych

2.2.5 Podłączenie linii transmisji danych RS485 (wyłącznie M-200-0)

Przyrząd podłącza się do magistrali RS485 równolegle, tzn. zacisk nr 17 A(+) do zacisku linii A, a zacisk nr 18 B(-) do B. Zacisk nr 19 GND służy do podłączenia potencjału odniesienia lub ekranu kabla transmisji danych. Podłączenie układu terminującego magistralę RS485 możliwe jest poprzez zwarcie odpowiednich zwór wewnątrz przyrządu (patrz rozdział 2.3.3).

Rys. 2.6 Podłączenie przyrządu do linii transmisji danych RS485

2.2.6 Podłączenie drukarki do portu RS232 (wyłącznie M-200-1)

Sposób podłączenia przedstawiony jest na Rys. 2.7.

Rys. 2.7 Podłączenie przyrządu drukarki

2.2.7 Port USB

Gniazdo portu USB typu A znajduje się na płycie czołowej. Przeznaczone jest do podłączenia zewnętrznej pamięci masowej (pendrive).

2.2.8 Port Ethernet

Gniazdo portu Ethernet (100Base-T) znajduje się z tyłu przyrządu. Wyprowadzenia gniazda są zgodne z EIA/TIA-568A/B. Do gniazda można podłączać 8-żyłową skrętkę, zakończoną wtykiem RJ-45.

2.3 Konfiguracja zwór wewnątrz przyrządu

Zmiana konfiguracji zwór wewnątrz przyrządu może być konieczna w przypadku: • podłączenia przetworników danego typu do wejść analogowych,

- podłączenia/odłączenia filtru na wejściu typu PULS,
- załączenia/wyłączenia terminacji magistrali RS485.

W tym celu wymagany jest demontaż obudowy przyrządu. Za pomocą śrubokręta płaskiego należy, w sposób widoczny na Rys. 2.1, ostrożnie podważyć dwa zatrzaski mocujące płytę tylną, a następnie wysunąć płytki z tyłu obudowy.

Rys. 2.8 Demontaż obudowy

2.3.1 Konfiguracja zwór związanych z wejściami analogowymi

Rys. 2.9 Zwory do konfiguracji wejść analogowych

			W	EJŚCIE	E 1					W	EJŚCIE	2		
	J11	J12	J13	J14	J15	J16	J17	J21	J22	J23	J24	J25	J26	J27
RTD 2-p	•	•					•	•	•					•
тс		•							•					
U			•	•						•	•			
0/4-20mA ⁽¹⁾		•			•	•			•			•	•	
0/4-20mA ⁽²⁾		•			•				•			•		

oznacza zworę zwartą

⁽¹⁾ wejścia typu 0/4-20mA przetworniki zasilane z przyrządu
 ⁽²⁾ wejścia typu 0/4-20mA przetworniki aktywne lub zasilane z zewnętrznego źródła zasilania

							WEJŚ	SCIE 1						
	J11	J12	J13	J14	J15	J16	J17	J21	J22	J23	J24	J25	J26	J27
RTD 3-p	•	•					•	•	•					•
RTD 4-p	•								•					

oznacza zworę zwartą

Przykład:

Aby podłączyć do wejścia pierwszego termoparę, a do wejścia drugiego aktywny przetwornik 4-20mA należy zewrzeć zwory J12, J22, J25 oraz J26.

Uwaga!

W przypadku dwuprzewodowego podłączenia czujników RTD/R zamiast zwierać zwory J17 i J27 wewnątrz przyrządu można zewrzeć odpowiednie zaciski wyprowadzone na zewnątrz urządzenia, szczegóły na rysunku w rozdziale 2.2.2.

Uwaga!

Konfiguracja fabryczna to obydwa wejścia skonfigurowane jako 0/4-20mA przetworniki aktywne.

2.3.2 Konfiguracja zwór związanych z wejściem typu PULS

Zwarcie zwory FILTER powoduje załączenie filtru.

Rys. 2.10 Zwora załączająca / wyłączająca filtr

Uwaga!

Konfiguracja fabryczna to filtr wyłączony (zwora rozwarta).

2.3.3 Konfiguracja zwór związanych z terminacją magistrali RS485

Zwory służące do załączania terminowania magistrali RS485 znajdują się na spodniej stronie dolnej płytki. Zwarcie obydwu zwór powoduje załączenie terminowania.

Uwaga!

Konfiguracja fabryczna to wyłączone terminowanie magistrali (zwory rozwarte).

Rys. 2.11 Zwory włączające terminowanie magistrali RS485

3 Ustawienia

Programowanie ustawień przyrządu możliwe jest na dwa sposoby:

- online za pośrednictwem portu RS485 i programu *M-200.exe* (wyłącznie M-200-0),
- offline z plików konfiguracyjnych zapisanych w pamięci masowej typu pendrive.

Oprócz zdalnej konfiguracji ustawień program M-200.exe umożliwia zapis ustawień do pliku (który może być następnie wykorzystany do konfiguracji urządzenia za pośrednictwem portu USB i pamięci typu pendrive) oraz przeprowadzenie testu odczytu wyników pomiarów.

Uwaga!

Program *M-200.exe* można bezpłatnie pobrać ze strony producenta: www.metronic.pl.

Aplikacja może pracować w dwóch trybach:

- ONLINE, program komunikuje się z rejestratorem przez port RS485 (wyłącznie M-200-0), dostępne są wszystkie funkcje programu.
- OFFLINE, praca programu bez komunikacji z rejestratorem, dostępna jest wtedy jedynie funkcja zapisu ustawień do pliku.

Po uruchomieniu programu, wybraniu języka interfejsu (domyślnie jest to język angielski; wybór jest zapamiętywany i wykorzystywany w kolejnym uruchomieniu) oraz

ROZPOCZNIJ PRACĘ Z PROGRAMEM ... naciśnięciu przycisku

pojawia się okno konfiguracji

komunikacji programu z modułem przez port RS485.

	trów transmisji z przyrz	adem	
Adres przyrządu:	001	(JWAGA !!! Parametry transmisii musza być ustawione zgodnie z
ort:	COM1	•	istawieniami transmisji w przyrządzie.
^v rę <mark>dkość transmisji:</mark>	19200	I V	NFORMACJA Jopuszczalny przedział wartości adresu w przyrzadzie
arzystość:	even	• v	vynosi od 001 do 247.
odatkowe opóźnieni lo przyrządu a odbio	e pomiędzy wysłaniem rozka rem odpowiedzi (timeout):	azu 0 [m	s]
utomatyczna dete Adres przyrządu: 1	ez transmisji z przyrządem (ekcja przyrządów Parzystość:	even	✓ Prędkość transmisji: 19200 ✓
Rozpocznij wys	zukiwanie	Przerwij wyszukiv	vanie
Nr	Adres	Parzystość	Prędkość

Rys. 3.1 Okno konfiguracji komunikacji programu z modułem M-200

Parametry transmisji należy ustawić zgodnie z ustawieniami w przyrządzie. Jeżeli parametry transmisji w module są nieznane, program umożliwia przeprowadzenie automatycznej detekcji przyrządu. W tym celu należy nacisnąć przycisk Rozpocznij wyszukiwanie. Proces wyszukiwania może trwać ok. 20 min.

Następnie należy wybrać jedną z dostępnych funkcji:

- Ustaw parametry pracy przyrządu funkcja umożliwia odczyt ustawień z przyrządu lub z pliku (również w trybie offline), modyfikacje ustawień oraz zaprogramowanie przyrządu (wyłącznie w trybie online; wyłącznie dla M-200-0) bądź zapis ustawień do pliku.
- Ustaw datę i czas funkcja pozwala odczytać datę i czas z przyrządu oraz zaprogramować nowe ustawienia dany i czasu (wyłącznie dla M-200-0).
- Odczyt bieżących wyników pomiaru funkcja umożliwia testowy odczyt wartości mierzonych oraz wskazań wewnętrznego czujnika temperatury (wyłącznie dla M-200-0).

/ybierz funkcję do wykona	nia	
USTAW PARAMETRY	PRACY PRZYRZĄDU	
🔘 USTAW DATĘ I CZAS		
O ODCZYT BIEŻĄCYCH	WYNIKÓW POMIARU	
Wstecz	Zakończ program	Dalej

Rys. 3.2 Wybór funkcji programu

3.1 Programowanie ustawień

Po wybraniu funkcji Ustaw parametry pracy przyrządu można:

- otworzyć plik z parametrami znajdujący się na dysku komputera (rozszerzenie .par);
- pobrać ustawienia z przyrządu (wyłącznie w trybie ONLINE);
- rozpocząć konfigurację od ustawień fabrycznych (domyślnych).

Z PLIKU	Następne okna programu zostaną wypełnione parametrami z wybranego pliku parametrów.
Z PRZYRZĄDU	Następne okna programu zostaną wypełnione parametrami odczytanymi z przyrządu. Opcja nieaktywna w trybie OFFLINE.
PARAMETRY FABRYCZNE	Następne okna programu zostaną wypełnione parametrami fabrycznymi.

Rys. 3.3 Okno wyboru źródła parametrów

Następnie kreator prowadzi użytkownika przez kolejne etapy konfiguracji:

- ustawienia globalne (patrz rozdział 3.1.1) oraz ustawienia wyjść przekaźnikowych (patrz rozdział 3.1.2),
- port RS485 (patrz rozdział 3.1.3) (lub port RS232) oraz port Ethernet (patrz rozdział 3.1.4),
- wejścia pomiarowe (patrz rozdział 3.1.6) oraz progi alarmowo-sterujące (patrz rozdział 3.1.7)
- ustawienia archiwizacji (patrz rozdział 3.1.8).

3.1.1 Ustawienia globalne

W górnej części okna (rysunek Rys. 3.4) widoczna jest informacja o wersji przyrządu i numerze seryjnym urządzenia (dostępne jedynie w przypadku gdy w trybie ONLINE pobrano ustawienia z przyrządu bądź otwarto plik z ustawieniami pochodzącymi z określonego przyrządu, tak więc informacje będą niedostępne np. w sytuacji gdy konfiguracje zaczęto od ustawień fabrycznych).

stawienia globalne	Chickens			
Wersja przyrządu:	1.06	Numer seryjny:	0	
Opis przyrządu [40 znaków]:	M-200 EW			
Jasność świecenia wyświetlacza:	10	0% 🔹		
Częstość skanowania wejść:	0.	2 s 🔹		
Jednostka temperatury:	C	•		

Rys. 3.4 Ustawienia globalne

Użytkownik ma możliwość wprowadzenia/skonfigurowania:

- Opisu przyrządu tekstowy opis przyrządu, ograniczenie wielkości do 40 znaków; opis przyrządu umieszczany jest w nagłówku archiwum oraz jest wyświetlany na stronie WWW;
- Jasności świecenia wyświetlacza do wyboru są dwie opcje 100% (maksymalna jasność) oraz 50% (zmniejszona jasność);
- Częstości skanowania wejść;
- Jednostki temperatury temperatura może być przedstawiana w °C lub °F;
- Korekty wewnętrznego czujnika temperatury jest on wykorzystywany do kompensacji temperatury spoiny odniesienia termopar. Ustawienie korekty na daną wartość (wyrażanej w ustawionych jednostkach temperatury) spowoduje, że do kompensacji zostanie przyjęta temperatura powiększona o daną wartość;
- Wyzwalania alarmów reakcja na przekroczenie może wystąpić po pierwszym bądź drugim wykryciu przekroczenia (wybranie opcji po drugim przekroczeniu ma na celu zapobieganie wystąpieniom alarmów w skutek krótkotrwałych fluktuacji sygnału).

3.1.2 Ustawienia wyjść przekaźnikowych (RL)

Wyjście RL1			Wyjście RL2		
Tryb pracy wyjścia:	sterowanie	•	Tryb pracy wyjścia:	sygnalizacja (pulsująca)	•
Aktywność wyjścia:	normalnie otwarte (NO)	•	Aktywność wyjścia:	normalnie zamknięte (NZ)	•
Wstecz		Zakończ I	program	Dalei	

Rys. 3.5 Ustawienia wyjść przekaźnikowych (RL)

Każde wyjście przekaźnikowe może pracować w trybie sterowania lub sygnalizacji:

- tryb pracy wyjścia sterowanie powoduje pobudzenie przekaźnika na czas przekroczenia i powrót do stanu wyjściowego po ustąpieniu przekroczenia;
- tryb pracy sygnalizacja pobudzenie występuje po przekroczeniu progu (pobudzenie ciągłe: sygnalizacja (ciągła); pobudzenie pulsujące: sygnalizacja (pulsująca)) i trwa do czasu potwierdzenia przekroczenia przyciskiem na płycie czołowej.

Wyjścia przekaźnikowe mogą być ustawione jako:

- normalnie otwarte (NO),
- normalnie zamknięte (NZ).

Uwaga!

W przyrządzie zastosowano przekaźniki półprzewodnikowe, w związku z czym brak napięcia zasilania powoduje zawsze otwarcie styku.

3.1.3 Ustawienia portu RS485

Ustawienia dla szeregowego portu komunikacyjnego RS485 to:

- Adres przyrządu zakres od 1 do 247, unikalny adres modułu na magistrali RS485;
- Prędkość transmisji obsługiwane prędkości to: 1200 bps, 2400 bps, 9600 bps, 19200 bps, 115200 bps, 230400 bps;
- Parzystość należy wybrać jedną z opcji kontroli parzystości: none + 1bit stop, none + 2 bit stop, even, odd;
- Opóźnienie odpowiedzi jest to minimalny czas po jakim urządzenie zacznie wysyłać odpowiedź na zapytanie; może być ustawiony w zakresie 0 ÷ 7000 ms.

stawienia portu komunikac Modbus RTU (M-200-0 / RS-4	yjnego 1 85)	
Adres przyrządu [001247]:	1	
Prędkość transmisji:	19200	
Parzystość:	even	
Opóźnienie odpowiedzi:	0	[ms]

Rys. 3.6 Okno ustawień portu RS485

3.1.4 Ustawienia portu RS232 oraz współpraca z drukarką

rędkość transmisji:		1200	•
Parzystość:		none + 1 bit stop	•
Nagłówek			23
🗸 Początek wydruku: M-	200 v.xx S/N		
Opis maksymalnie 4 x 40 :	znaków (4 x 24 z	naków):	
Opis testowy			
			-

Rys. 3.7 Okno ustawień portu RS232

Ustawienia dla szeregowego portu komunikacyjnego RS232 to:

 Prędkość transmisji – obsługiwane prędkości to: 1200 bps, 2400 bps, 9600 bps, 19200 bps, 115200 bps, 230400 bps;

 Parzystość – należy wybrać jedną z opcji kontroli parzystości: none + 1bit stop, none + 2 bit stop, even, odd;

Użytkownik może określić czy na początku wydruku ma się pojawiać napis M-200 v.xx S/N, gdzie v.xx oznacza wersję przyrządu, a S/N jego numer seryjny oraz wprowadzić dodatkowy opis. Ponadto należy określić co który rekord danych archiwalnych ma być drukowany (wszystkie rekordy, co 3, co 6, co 10, co 30, co 60) oraz czy drukowane mają być również zdarzenia.

3.1.5 Ustawienia portu Ethernet

Ustawienia transmisji dla portu Ethernet to:

- Adres IP należy ustawić zgodnie z siecią, w której ma pracować urządzenie;
- Port zaleca się ustawienie portu 502, jako dedykowanego do Modbus TCP;
- Maska podsieci należy ustawić zgodnie z siecią, w której ma pracować urządzenie;
- Brama należy ustawić zgodnie z siecią, w której ma pracować urządzenie;
- Serwer DHCP powinien być włączony (ON) jeżeli przyrząd podłączony jest bezpośrednio do karty sieciowej komputera, w przeciwnym razie serwer DHCP należy wyłączyć (OFF);
- *Opóźnienie odpowiedzi* jest to minimalny czas po jakim urządzenie zacznie wysyłać odpowiedź na zapytanie.
- Adres MAC dostępny jest jedynie podgląd adresu MAC przyrządu, użytkownik nie ma możliwości edycji.

Adres IP:	192.168.1.1	Serwer DHCP:	ON	
Port:	502	Opóźnienie odpowiedzi:	0	[s]
Maska podsieci:	255.255.255.0			
Brama:	192, 168, 1, 1	Adres MAC:	00:50:C2:95:73:FD	
Wstecz		Zakończ program	Dalej	

Rys. 3.8 Ustawienia portu Ethernet

3.1.6 Ustawienia wejść pomiarowych

Należy wybrać typ wejścia oraz rodzaj czujnika (opcje dostępne dla poszczególnych wejść pomiarowych przedstawia poniższa tabela), a następnie, w zależności od typu wejścia, skonfigurować kolejne parametry.

WEJŚCIE	TYP WEJŚCIA	RODZAJ WEJŚCIA
		charakterystyka definiowana
		R
IN1		S
	TC / 11 / 11 / 11 / 11 / 11 / 11 / 11 /	В
	10/0(-10+10)	J
		т
		E
		К

		Ν
	U (-10V +10V)	charakterystyka definiowana
		charakterystyka definiowana
		Pt100+
		Pt100
		Pt200+
	RTD / R 2-przewodowe	Pt200
		Pt500+
		Pt500
		Pt1000+
		Pt1000
		charakterystyka definiowana
		Pt100+
		Pt100
		Pt200+
	RTD / R 3-przewodowe	Pt200
		Pt500+
		Pt500
		Pt1000+
		Pt1000
		charakterystyka definiowana
		Pt100+
		Pt100
		Pt200+
	RTD / R 4-przewodowe	Pt200
		Pt500+
		Pt500
		Pt1000+
		Pt1000
	0/4-20mA	charakterystyka definiowana
		charakterystyka definiowana
		R
		S
		В
IN2	TC / U (-1V +1V)	J
		т
		E
		К
		Ν
	U (-10V +10V)	charakterystyka definiowana

		charakterystyka definiowana
		Pt100+
		Pt100
		Pt200+
	RTD / R 2-przewodowe	Pt200
		Pt500+
		Pt500
		Pt1000+
		Pt1000
	0/4-20mA	charakterystyka definiowana
INI3	pomiar częstotliwości	-
INJ	wejście dwustanowe	-

Uwaga!

Typy wejścia RTD/R 3-przewodowe oraz RTD/R 4-przewodowe dostępne są jedynie dla wejścia IN1. Wybranie jednego z nich powoduje automatyczne ustawienie wejścia IN2 jako wyłączonego.

Uwaga!

Rodzaj wejścia Pt100+, Pt200+, Pt200+, Pt1000+ oznacza pomiar odpowiednio za pomocą Pt100, Pt200, Pt200, Pt1000 ze zwiększoną dokładnością w zakresie od -50°C do +250°C.

Uwaga!

Kompensacja temperatury spoiny odniesienia termopar odbywa się automatycznie.

Ustawienia dla wejść analogowych:

- Korekta rezystancji przewodów funkcja dostępna jedynie dla wejść typu RTD / R; wprowadzona wartość musi mieścić się w zakresie od -100 Ω do +100 Ω. W przypadku podłączenia czujnika za pomocą trzech lub czterech przewodów (kompensacja automatyczna) korektę rezystancji można wykorzystać do kompensacji błędu czujnika poprzez "przesunięcie" charakterystyki o dodatnią lub ujemną wartość rezystancji.
- 2. Filtr wpisana wartość oznacza stałą czasową cyfrowego filtru dolnoprzepustowego.
- Rozdzielczość wyświetlanego wyniku ilość miejsc po przecinku z jaką ma być wyświetlany wynik (1 – wartości ułamkowe nie są wyświetlane; 0,1 – jedno miejsce po przecinku; 0,01 – dwa miejsca po przecinku; 0,001 – trzy miejsca po przecinku)
- 4. *Kolor standardowy* dla każdego wyniku można przypisać kolor (spośród zielony, pomarańczowy, czerwony) wyświetlania.

M-200 program modyfika	icji param	etrów			
Ustawienia wejścia 1 Typ wejścia:	RTD /	R 3-przewodowe	•	Wejście 2 jest niedostepne dla tego typu wejścia 1.	
Rodzaj czujnika:	Pt100		•]	
Korekta rezystancji przewodó	w:	0,000	[Ω]	I	
Filtr:		0	[s]		

Rys. 3.9 Ustawienia wejścia analogowego

Ustawienia dla wejścia typu PULS:

- 1. *Kolor standardowy* dla każdego wyniku można przypisać kolor (spośród zielony, pomarańczowy, czerwony) wyświetlania.
- 2. *Filtr* wpisana wartość oznacza stałą czasową cyfrowego filtru dolnoprzepustowego (tylko dla typu wejścia: pomiar częstotliwości).
- 3. *Rozdzielczość wyświetlanego wyniku* ilość miejsc po przecinku z jaką ma być wyświetlany wynik (tylko dla typu wejścia: pomiar częstotliwości).
- 4. *Wartość dla zwarcia* wartość wyświetlana gdy wejście zwarte (tylko dla typ wejścia: wejście dwustanowe).
- 5. Opis zwarcia
- Wartość dla rozwarcia wartość wyświetlana gdy wejście rozwarte (tylko dla typ wejścia: wejście dwustanowe).
- 7. Opis rozwarcia

Ustawienia wejścia 3					
Typ wejścia:	Pomiar	częstotliwości	•		
Kolor standardowy:	ziele	ony	Ť		
Ustawienia pomiaru cz	estotliwości				
Filtr:		0	[s]		
Rozdzielczość wyświetlane	go <mark>wyniku:</mark>	0,1	•		
Usta <mark>wienia</mark> wejścia dw	ustanowego				
Wartość dla zwarcia:		1		Opis zwarcia (drukarka - 6 znaków):	

Rys. 3.10 Ustawienia wejścia typu PULS

Charakterystyka definiowana:

Dla wejść 1 oraz 2 pracujących w trybie *charakterystyka definiowana* oraz dla wejścia 3 pracującego w trybie *pomiar częstotliwości* należy wprowadzić charakterystykę przetwarzania. Punkty charakterystyki (max 50) podaje się jako pary wartości sygnału (wyrażone w mA, mV, Ω lub Hz) i wielkości wyświetlanej. Wartości pomiędzy wprowadzonymi punktami interpolowane są liniowo.

Jeżeli charakterystyka nie obejmuje całego zakresu pomiarowego, to przyjmowana jest wartość stała odpowiednio dla pierwszego i ostatniego punktu charakterystyki.

M-200

Wprowadzanie wartości do programu należy zakończyć przyciskiem ZATWIERDź dane. Spowoduje to również jednoczesne odświeżenie podglądu charakterystyki w oknie graficznym.

Nr WE [mA, mV, ohm,	, Hz] wynik	
4,000	0,000	
2 20,000	100,000	
3		60
4		40
5		20
6		
7		4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
8		
9		UWAGA !!!
10		Po dokonaniu zmian w tabelce charakterystyki ZATWIERD2 spowoduje to również odświeżenie charakterystyki.
11		
12		ZATWIERDŹ dane
13		
14		Wyczyść tabelkę
15		
16		Wczytaj z pliku
17		
18		Zapisz do pliku
19		
		- DAGE

Rys. 3.11 Liniowa charakterystyka przetwarzania

Cha	rakterystyka u	żytkowni	ka - wejście 1
Nr	WE [mA, mV, ohm, Hz]	wynik	
1	4,000	0,888	25
2	5,000	1,175	20
3	6,000	1,509	15
4	7,000	1,904	
5	8,000	2,376	5
6	9,000	2,942	
7	10,000	3,627	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
8	11,000	4,457	
9	12,000	5,466	UWAGA III
10	13,000	6,695	Po dokonaniu zmian w tabelce charakterystyki ZATWIERDŹ dane, spowoduje to również odświeżenie charakterystyki.
11	14,000	8,192	
12	15,000	10,018	ZATWIERDŹ dane
13	16,000	12,246	
14	17,000	14,965	Wyczyść tabelkę
15	18,000	18,285	
16	19,000	22,339	Wczytaj z pliku
17	20,000	27,290	
18			Zapisz do pliku
19			
		N.	
	Wsterz		Zakończ program Dalej

Rys. 3.12 Nieliniowa charakterystyka przetwarzania

Wprowadzona charakterystyka może być zapisana do pliku (Zapisz do pliku ; dane zapisane zostaną w pliku tekstowym .txt), jak również wczytana z pliku (Wczytaj z pliku) po uprzednim przygotowaniu, np. w programie Excel (plik należy zapisać w formacie tekstowym – tekst rozdzielany znakiem tabulacji).

Poprawny format pliku przedstawiony jest na rysunkach Rys. 3.13 i Rys. 3.14:

- a) plik musi zaczynać się od nagłówka [M-200 charakterystyka]
- b) kolejne wiersze charakterystyki musi poprzedzać numer wiersza w formacie: 0=, 1=, 2= itd.
- c) kolumny muszą być rozdzielone znakiem tabulacji.

M-200

Rys. 3.13 Przygotowywanie charakterystyki przetwarzania w programie Excel

📃 ch	-ka.txt -	Notatnik	20.0			X
<u>P</u> lik	<u>E</u> dycja	Format	<u>W</u> idok	Pom	D <u>C</u>	
[M-2	200 cha	araktery	styka]			~
0=		4	0,89			
1=		5	1,18			
2=		6	1,51			
3=		7	1,9			
4=		8	2,38			
5=	1	9	2,94			
6=		10	3,63			
7=		11	4,46			
8=		12	5,47			
9=		13	6,69			
10=	88	14	8,19			
11=		15	10,0	2		
12=	5	16	12,2	5		
13=		17	14,9	7		
14=	a	18	18,2	9		
15=	8	19	22,3	4		
16=	5	20	27,2	9		
			10001000			-
_						27.

Rys. 3.14 Format pliku .txt z charakterystyką przetwarzania

3.1.7 Progi alarmowo-sterujące

Dla każdego wejścia pomiarowego można przypisać do dwóch progów alarmowosterujących. Dla każdego progu indywidualnie konfiguruje się:

- a) *Poziom alarmu* czyli wartość, po przekroczeniu której wyzwalany jest alarm; poziom alarmu podaje się w jednostkach mierzonej wartości.
- b) *Histerezę* jest to różnica pomiędzy poziomem przekroczenia progu a powrotem. Wartość histerezy podaje się w jednostkach mierzonej wartości.

- c) Typ alarmu: Górny (tzn. przekroczenie następuje gdy mierzona wielkość jest większa niż ustawiony limit) lub Dolny (przekroczenie następuje gdy mierzona wartość spada poniżej ustalonego limitu).
- d) Przypisanie do wyjść RL (przekaźnik RL1, przekaźnik RL2, przekaźniki RL1, RL2): po przekroczeniu wybranego progu alarmowo-sterującego następuje pobudzenie wybranego wyjścia przekaźnikowego (wybranych wyjść przekaźnikowych); konfiguracja wyjść przekaźnikowych opisana jest w rozdziale 3.1.2.
- e) Kolor (bez zmiany, czerwony, pomarańczowy, zielony): po przekroczeniu danego progu alarmowego może ulegać kolor prezentacji wyniku na wyświetlaczu przyrządu. Kolor przypisany do alarmu 2 ma wyższy priorytet, tzn. jeżeli jednocześnie będą przekroczone obydwa progi wynik będzie wyświetlany w kolorze przypisanym do alarmu 2. W sytuacji gdy kolor alarmu 2 to bez zmian wynik wyświetlany jest w kolorze przypisanym do alarmu 1.

Alarmy mogą następować po pierwszym bądź po drugim przekroczeniu (patrz rozdział 3.1.1). Przekroczenie progu alarmowo-sterującego może również skutkować załączeniem II prędkości archiwizacji (patrz rozdział 3.1.8).

Typ alarmu:	dolny	•	Typ alarmu:	górny	
Poziom alarmu:	90,000		Poziom alarmu:	150,000	
Histereza:	5,000		Histereza:	5,000	
Przypisanie do wyjść RL:	przekaźnik RL1	•	Przypisanie do wyjść RL:	przekaźnik RL2	•
🕅 Włącz II prędkość archiw	vizacji przy przekroczeniu		📝 Włącz II prędkość archiw	vizacji przy przekroczeniu	
Kolor (prioryt <mark>e</mark> t niższy):	pomarańczowy	•	Kolor (priorytet wyższy):	czerwony	÷
Wsterz		Zakończu	program	Dalei	

Rys. 3.15 Ustawienia alarmów

Przykład:

Próg alarmowy Górny, poziom alarmu 50°C, histereza 5°C: przekroczenie nastąpi gdy temperatura wzrośnie powyżej 50°C, a ustąpi gdy spadnie poniżej 50°C-5°C = 45°C.

3.1.8 Ustawienia archiwizacji

Dane zapisywane są w pliku znajdującym się w wewnętrznej pamięci danych przyrządu. Podczas konfiguracji archiwizacji należy podać:

- dwucyfrowe *ID* przyrządu: nazwa pliku archiwum to *IDyymmdd.dat*, gdzie yy to rok, mm miesiąc, dd – dzień w którym zapisany został ostatni rekord w pliku; aby móc rozróżnić pliki pochodzące z różnych przyrządów zaleca się nadawanie unikatowych numerów *ID*;
- *Podział archiwum* oznacza podział danych archiwalnych na pliki jednorazowo kopiowane do pamięci przenośnej (patrz rozdział 1.6.1):
 - dzienne kopiowanie danych w postaci plików zawierających dane z jednego dnia; należy wybrać tą opcję, jeżeli potrzebne jest szybkie kopiowanie danych z ostatnich kilku dni;

- miesięczne kopiowanie danych w postaci plików zawierających dane z jednego miesiąca (skutkuje to dłuższym kopiowaniem jednego pliku), przydatne jeżeli użytkownik chce mieć dostęp za pomocą pamięci przenośnej do starszych danych (np. sprzed kilku miesięcy);
- Blokada sterowania archiwum z klawiatury pozwala zablokować działanie przycisku USB REC związane ze sterowaniem pracą archiwum;
- *I prędkość archiwizacji* (*brak rejestracji*, 0.2s, *1s*, *10s*, *30s*, *1min*, *10min*, *30min*, *1h*): podstawowa częstość archiwizacji;
- *II prędkość archiwizacji (brak rejestracji*, 0.2s, *1s*, *10s*, *30s*, *1min*, *10min*, *30min*, *1h*): uruchamia się po przekroczeniu wybranych progów alarmowo-sterujących (patrz rozdział 3.1.7);
- Bramkowanie archiwizacji wejściem dwustanowym: archiwizacja może być wstrzymywana w zależności od stanu wejścia dwustanowego (wejście 3)
- Zapis zmiany stanu / zdarzenia

stawienia archiwizacji			
D do nazwy pliku [IDyymmdd.dat]:	23		
odział archiwum:	dzienne	•	
lokada sterowania archiwum z klawiati	Jry:]	
prędkość archiwizacji:	10 [s]	•	
I prędkość archiwizacji:	0.2 [s]	-	
Ustawienia związane z wejścien	ı <mark>dwustanowym</mark> (v	vejście 3)	
Di difikowalile al criwizacji wejscieni (Jwdstanowym.	wsu zymanie archiwizacji guy u (starrniski / zwarce)	
and the second			

Rys. 3.16 Ustawienia archiwizacji

3.1.9 Programowanie przyrządu

Użytkownik ma możliwość

- zaprogramowania przyrządu (wyłącznie w trybie online); zaprogramowanie modułu zostanie potwierdzone komunikatem;
- zapisu ustawień do pliku (może być wykorzystany do zaprogramowania przyrządu offline przy wykorzystaniu pendrive, patrz rozdział 5);
- powrotu do wyboru funkcji (okno widoczne na Rys. 3.2)

M-200 program modyfikacji parametrów	
PROGRAMOWANIE PRZYRZĄDU	Naciśnij przycisk aby zaprogramować przyrząd parametrami ustawionymi w programie.
ZAPISZ USTAWIENIA DO PLIKU	Zapisanie ustawień parametrów w pliku (nazwa_pliku.par). Plik można wykorzystać do zaprogramowania przyrządu przy następnej pracy z programem. Zapisz ustawienia w pliku M-200.par do programowania za pomocą pendrive'a.
POWRÓT DO WYBORU FUNKCJI	Ustawianie nowych wartości parametrów lub przejście do bieżącego odczytu danych pomiarowych.
Wstecz Latus	Zakończ program

Rys. 3.17 Okno programowania ustawień/zapisu ustawień do pliku

3.2 Ustawianie daty i czasu w przyrządzie

Po wybraniu funkcji Ustaw datę i czas (patrz rysunek Rys. 3.2) możliwe jest:

- odczytanie daty i czasu z przyrządu,
- synchronizacja daty i czasu z datą i czasem systemowym komputera,
- zaprogramowanie ręcznie wprowadzonej daty i czasu.

dczyt ustawienia daty i czasu z przyrząd	u		
ODCZYTAJ	Data (format: RRRR-MM-DD): Czas (format: GG:MM:SS):	[
lowe ustawienia daty i czasu			
SYNCHRONIZUJ z komputerem	Data (format: RR-MM-DD):	12-05-01	
ZAPROGRAMUJ	Czas (format: GG:MM:SS):	17:56:34	
UWAGA !!! Funkcja SYNCHRONIZUJ powoduje pobranie Funkcja ZAPROGRAMUJ służy do zaprogramu przyrządu po "ręcznym" wpisaniu wartości do ol W przypadku programowania nowych wartości	aktualnej DATY i CZASU z komputera i : owania DATY i CZASU kienek edycyjnych. należy podać obydwie wartości: DATA	zaprogramowanie nimi pr CZAS.	zyrządu.

Rys. 3.18 Ustawianie daty i czasu w przyrządzie

4 Test odczytu wyników pomiarów

Po wybraniu funkcji *Odczyt bieżących wyników pomiaru* (Rys. 3.2) należy w oknie widocznym na rysunku Rys. 4.1 określić jak często mają być odczytywane wyniki, a nastepnie pacienać przycisk **START ODCZYTU**

a następnie nacisnąć przycisk **START ODCZYTU** Program co ustalony czas będzie dokonywał odczytu:

- wartości zmierzonych ([mV] dla czujników TC/U; [Ω] dla czujników RTD/R; [mA] dla przetworników 0/4-20mA);
- zmierzonej temperatury ([°C] bądź [°F]) bądź wielkości wyliczonych z charakterystyki definiowanej;
- wskazań wewnętrznego czujnika temperatury służącego do kompensacji temperatury spoiny odniesienia termopar.

Widoczna będzie również data i godzina ostatniego odczytu, oraz licznik wskazujący ile razy zostały odczytane dane.

deaut danuch r	omiarowych z przyrządu co	
uczycuanycni		START ODCZYTU
<mark>icznik odc</mark> dres przyrządu	zytów: 0	Data odczytu: Godzina odczytu:
WEJŚCIE 1	Wartość zmierzona [mV / ohm / mA]:	Wartość obliczona:
WEJŚCIE 2	Wartość zmierzona [mV / ohm / mA]:	Wartość obliczona:
WEJŚCIE 3	Wartość zmierzona [Hz / 1/0]:	Wartość obliczona:
CZUJNIK WE	WNĘTRZNY	
1	Vstecz Zakoń	cz program

Rys. 4.1 Okno odczytu bieżących wyników pomiaru

Podczas odczytu danych na dole okna widoczny jest pasek statusu:

Transmisja poprawna:

 Status
 Odczyt bieżący wykonany.

 Trwa wymiana danych:

 Status
 Trwa odczyt danych z przyrządu. Czekaj ...

 Transmisja niepoprawna:

 Status
 Brak danych ub care odebrane są uszkodzone

 Aby zakończyć odczyt należy nacisnąć przycisk

5 Programowanie przyrządu przy wykorzystaniu pamięci USB

Programowanie przyrządu ustawieniami zapisanymi w pliku odbywa się przy użyciu pamięci przenośnej typu pendrive. Plik z ustawieniami *M-200.par* bądź *m-200.par* (tworzenie pliku z ustawieniami przedstawione zostało w rozdziale 3.1.9) należy skopiować do katalogu głównego pamięci przenośnej i umieścić ją w gnieździe USB przyrządu. Następnie należy długo (aż do usłyszenia sygnału dźwiękowego) przytrzymać klawisz USB REC, spowoduje to rozpoczęcie programowania przyrządu nowymi ustawieniami (dioda USB świeci w kolorze pomarańczowym). Po zakończeniu tego procesu przyrząd zostanie uruchomiony ponownie.

Uwaga!

Zbyt krótkie naciśnięcie przycisku USB REC spowoduje rozpoczęcie kopiowania danych z archiwum, szczegóły w rozdziale 1.6.1.

Uwaga!

W trakcie przenoszenia danych miedzy rejestratorem a pamięcią przenośną nie należy wyciągać jej z gniazda USB. Grozi to utratą danych.

Jeżeli w katalogu głównym znajdował się również plik z firmware rejestratora, to przyrząd najpierw zostanie zaprogramowany nowymi ustawieniami, a następnie wymieniony zostanie jego firmware (patrz rozdział 1.8).

6 Dane techniczne

	PŁYTA CZOŁOWA
Typ wyświetlacza:	7-segmentowy, trójkolorowy (zielony, pomarańczowy, czerwony) wyświetlacz LED
Wysokość cyfr:	14,2 mm
Sygnalizacja:	6 dwukolorowych (czerwono-zielonych) diod LED: "REC", "USB", "BATT", "1", "2", "3"
Klawiatura:	2 przyciski: "1-2-3", "USB REC"
Gniazdo USB:	Zgodnie ze standardem USB, typ A
	PŁYTA TYLNA
Podłączenie przewodów:	Łączówki śrubowe, maksymalny przekrój przewodów 1,5 mm ² 3 łączówki 4-pozycyjne 2 łączówki 2-pozycyjne 3 łączówki 3-pozycyjne
Gniazdo portu Ethernet:	RJ-45
Przyciski "REC":	Sterowanie pracą archiwum
	WEJŚCIA
Separacja galwaniczna między wejściami:	Brak
Separacja galwaniczna od pozostałych obwodów:	Brak
WEJŚCIA ANALOGOWE	
Liczba wejść:	2: podłączenie 2- przewodowe 1: podłączenie 3- lub 4- przewodowe
Typ wejść:	RTD/R, TC/U, 0/4-20mA; ustawienie typu wejścia za pomocą zwór wewnątrz przyrządu
Konfiguracja wejścia typu RTD/R	
Typ czujnika:	Pt100, Pt200. Pt500, Pt1000, rezystancyjny
Sposób podłączenia czujnika:	4-, 3- lub 2- przewodowe
Prąd czujnika:	200μA; podłączenie 2-, 3- przewodowe 400μA; podłączenie 4- przewodowe
Kompensacja rezystancji przewodów w podłączeniu 4- lub 3-przewodowym:	automatyczna + stała w zakresie $-100 \dots +100 \Omega$
Kompensacja rezystancji przewodów W podłączeniu 2-przewodowym:	stała w zakresie $-100 \dots +100 \Omega$
Rezystancja przewodów:	max 50 Ω
Zakres pomiaru rezystancji:	max 5 kΩ
Charakterystyka przetwarzania dla R:	Definiowana 50-punktów
Konfiguracja wejścia typu TC/U	
Kompensacja spoiny odniesienia:	Wewnętrzny czujnik Pt1000
Zakres kompensacji spoiny odniesienia:	-50,0 °C do +99,9 °C
Zakres mierzonego napięcia:	- 10 V do +10 V
Maksymalna rezystancja przewodów kompensacyjnych (doprowadzających do czujnika):	150 Ω

M-200

Rezystancja wejściowa:	>10 kΩ			
Charakterystyka przetwarzania (dla U):	Definiowana 50-punktów			
Konfiguracja wejście typu 0/4-20mA				
Zakres pomiaru:	0-24mA			
Rezystancja wejściowa:	92 Ω +/-5%			
Zasilanie przetwornika z przyrządu:	Nie			
Maksymalne napięcie wejściowe:	±30 VDC pomiędzy zaciskami I+, I-			
Charakterystyka przetwarzania:	Definiowana 50-punktów			
Błąd pomiaru				
Błąd podstawowy (dla temp. otoczenia 25 °C):	Wg tabeli dla danego typu czujnika			
Dryft temperaturowy (w zakresie 0 °C do 50 °C):	0,025% zakresu /10 °C			
WEJŚCIE TYPU PULS				
Maksymalne napięcie wejściowe:	30 VDC lub 30 V _{p-p}			
Zakres pomiaru:	Od 0,001 Hz do 20 kHz (od 0,001 Hz do 1 kHz, gdy kondensator filtrujący podłączony)			
Minimalna szerokość impulsu:	20 µs			
	(0,5 ms, gdy kondensator mitrujący podłączony)			
Prod w stanie rozwarcia.	2.2 m A			
Prąd w stanie zwarcia.	3,3 MA			
Prog załączenia / wyłączenia.	2,7 V / 2,4 V			
llość wviść:	2			
Typ wyjść:	Przekaźniki półprzewodnikowe			
Maksymalny prąd obciążenia:	100 mA (AC/DC)			
Maksymalne napięcie:	60 V (AC/DC)			
POR	T SZEREGOWY RS485			
Sygnały wyprowadzone na łączówce:	A(+), B(-), GND			
Separacja galwaniczna:	Tak, 500 V AC/DC			
Maksymalne obciążenie:	32 odbiorniki/nadajniki			
Protokół transmisji:	Modus RTU			
Maksymalna długość linii:	1200 m			
Prędkość transmisji:	1.2, 2.4, 9.6, 19.2, 115.2, 230.4 kbps – programowana			
Kontrola parzystości:	Even, Odd, None – programowana			
Ramka:	1 bit startu, 8 bitów danych, 1 bit stopu (1 lub 2 bity stopu dla None)			
Minimalne opóźnienie odpowiedzi:	0 ÷ 7000 ms – programowane			
Maksymalne napięcie różnicowe A(+) – B(-):	±14 V			
Maksymalne napięcie sumaryczne A(+) – "masa" lub B(-) – "masa":	-7 +12 V			
Minimalny sygnał wyjściowy nadajnika:	1.5 V (przy R ₀ =27 Ω)			

M-200

imalna impedancja linii transmisji danych: 27 Ω			
Zabezpieczenie zwarciowe / termiczne:	Tak		
	PORT ETHERNET		
Protokół transmisji:	Modbus TCP, ICMP (ping), DHCP Server, http server		
Interfejs:	100BaseT Ethernet		
llość jednocześnie otwartych połączeń:	4		
Złącze:	RJ-45		
Diody sygnalizacyjne LED:	2, wbudowane w gniazdo RJ45		
	PORT USB		
Gniazdo portu:	Gniazdo typu A, zgodne ze standardem USB		
Wersja:	USB 1.1		
Sygnalizacja zapisu:	Zielono-czerwona dioda LED na płycie czołowej		
WEWNĘTRZNA PAMIĘĆ DANYCH			
Pojemność pamięci:	2GB		
Sygnalizacja zapisu:	Zielono-czerwona dioda LED na płycie czołowej		
	ZASILANIE		
Napięcie zasilania:	24 VAC (+5% / -10%) 20 … 30 VDC (biegunowość obojętna)		
Moc pobierana:	Max 5 W		
	WARUNKI PRACY		
Temperatura pracy:	-20° C ÷ +50° C		
Temperatura przechowywania:	-30° C ÷ +70° C		
Wilgotność względna podczas pracy:	5 90% bez kondensacji		
WYMIARY	MECHANICZNE – OBUDOWA		
Typ obudowy:	Do zabudowy tablicowej, tworzywo politlenek fenylenu		
Wymiary:	96 mm x 48 mm x 100 mm		
Wymiary wycięcia w panelu:	92 ⁺⁰⁸ mm x 45 ^{+0,6} mm		
Maksymalna grubość płyty panelu:	5 mm		
Masa:	Ok. 0.3 kg		

Tabela zakresów czujników:

RODZAJ WEJŚCIA	ZAKRES	DOKŁADNOŚĆ	CHARAKTERYSTYKA
Pt100 / Pt200 / Pt500 / Pt1000	-200 do +850 °C	+/-0,5 °C	IEC751
Pt100+ / Pt200+ / Pt500+ / Pt1000+	-50 do +250 °C	+/-0,3 °C	IEC751
J (Fe – CuNi)	-210 do +1200 °C	+/-0,5 °C*	IEC584
K (NiCr – Ni)	-270 do +1370 °C	+/-0,5 °C*	IEC584
T (Cu – CuNi)	-270 do +400 °C	+/-0,5 °C*	IEC584
E (NiCr – CuNi)	-270 do +1000 °C	+/-0,5 °C*	IEC584
N (NiCrSi – NiSi)	-270 do +1300 °C	+/-0,5 °C*	IEC584
B (Pt30Rh –Pt6Rh)	0 do +1820 °C	+/-0,5 °C*	IEC584
R (Pt13Rh – Pt)	-50 do +1760 °C	+/-0,5 °C*	IEC584
S (Pt10Rh – Pt)	-50 do +1760 °C	+/-0,5 °C*	IEC584
R	0 do 5000 Ω	+/-0,1 %	definiowana
U	-1 do +1 V	+/-0,5%	definiowana
0/4-20mA	0-20mA lub 4-20mA	+/-0,2%	definiowana

* Dokładność nie zawiera błędu pomiaru temperatury zimnych końców (+/- 2°C)

7 Wyposażenie i akcesoria

7.1 Wyposażenie podstawowe przyrządu

Przyrząd M-200	1 szt.
Łączówki śrubowe 4-pozycyjne	3 szt.
Łączówki śrubowe 3-pozycyjne	3 szt.
 Łączówki śrubowe 2-pozycyjne 	2 szt.
Instrukcja obsługi drukowana	1 szt.
• Płyta CD (elektroniczna wersja instrukcji i program M-200 PMU.exe)	1 szt.
Karta gwarancyjna	1 szt.

7.2 Wyposażenie dodatkowe przyrządu

- Konwerter RS485 ↔ USB serwisowy (bez separacji galwanicznej) <u>CONV485USB</u>.
- Konwerter RS485 ↔ USB z separacją galwaniczną <u>CONV485USB-I</u>.
- Konwerter RS485 \leftrightarrow Ethernet <u>CONV485E</u>.
- Transformator zasilający <u>PSS 10VA 230/24 VAC</u> firmy Breve.
- Transformator zasilający PSS 30VA 230/24 VAC firmy Breve.

8 Podmiot wprowadzający produkt na rynek UE

Podmiot wprowadzający produkt na rynek Unii Europejskiej:

Producent: METRONIC Aparatura Kontrolno – Pomiarowa 31-261 Kraków, ul. Wybickiego 7 Tel. / faks: 12 6326977, 12 6237599 www.metronic.pl

Notatki:

Notatki:

Notatki:

9 Protokół transmisji Modbus RTU / Modbus TCP 📀

W urządzeniu zaimplementowano następujące funkcje Modbus:

- 03 (0x03) Read Holding Registers,
- 04 (0x04) Read Input Registes,
- **06** (0x06) Write Single Register,
- 16 (0x10) Write Multiple Registers,
- 08 (0x08) Diagnostic:
 - subfunction 0 "echo",
 - subfunction 1 restart communications options.

Modbus RTU dostępny jest przez port RS485, a Modbus TCP przez port Ethernet.

9.1 Parametry transmisji szeregowej dla Modbus RTU

Parametry transmisji należy ustawić zgodnie z parametrami systemu nadrzędnego:

- adres: 01 (01, ..., 247)
- prędkość: 19200 (1200, 2400, 9600, 19200, 115200, 230400)
- parzystość: even (none+ 1 bit stop, none + 2 bity stop, odd, even)
- czas opóźnienia odpowiedzi: 0 ms (0 ÷ 7000 ms)

Zgodnie ze standardem Modbus RTU ramka (przesyłana informacja) ma postać:

Znacznik	Adres	Funkcia	Dane	Kontrola CRC	Znacznik końca
początku	7,0100	r unitoju	Dano		Zhaozhik Konou
T1 T4	1 bajt	1 bajt	n bajtów	2 bajty	T1 T4

Informacja przesyłana do przyrządu z komputera nadrzędnego jest żądaniem odpowiedzi (Query), natomiast przyrząd wysyła odpowiedź (Response).

9.2 Ustawienia portu Ethernet dla Modbus TCP

- adres IP
- port
- maska (np. 255.255.255.0)
- brama (np. 1.0.0.1)
- serwer DHCP (wyłączony)
- timeout (typowo 60 s)

Zgodnie ze standardem MODBUS w trybie TCP/IP ramka (przesyłana informacja) ma postać:

Nagłówek MBAP	Funkcja	Dane	
7 bajtów	1 bajt	n bajtów	

Informacja przesyłana do przyrządu z komputera nadrzędnego jest żądaniem odpowiedzi (Query), natomiast przyrząd wysyła odpowiedź (Response).

9.3 Odczyt i zapis ustawień przyrządu

9.3.1 Funkcja 03 – Read Holding Registers

Funkcja 03 (0x03) *Read Holding Registers* umożliwia odczyt parametrów pracy przyrządu. Rozkaz 03 ma postać:

Funkcja (1B)	Adres pocz. (2B)	llość rejestrów (2B)

Funkcja – 03 HEX – odczyt parametrów urządzenia.

Adres początkowy – adres rejestru, od którego dane mają być wysyłane. Ilość rejestrów – ilość rejestrów dwubajtowych do odczytania.

W odpowiedzi przyrząd wysyła ciąg znaków w postaci:

Funkcja (1B)	llość bajtów	Dane
	(1B)	(nB)

Funkcja – potwierdzenie zwrotne, w przypadku błędu do wartości kodu rozkazu dodana jest wartość 80 HEX.

llość bajtów – n bajtów przesyłanych w odpowiedzi (a nie ilość rejestrów). Dane – n bajtów zawartości rejestrów.

9.3.2 Funkcja 06 – Write Single Register

Funkcja 06 (0x06) Write Single Register ma postać:

Funkcja (1B)	Adres	Dane
	(2B)	(2B)

Funkcja – 06 HEX – zapis parametrów urządzenia.

Adres – adres rejestru, do którego dane mają być zapisywane. Dane – dane do zapisania.

W odpowiedzi przyrząd wysyła ciąg danych postaci:

Funkcja (1B)	Adres	Dane
	(2B)	(2B)

Funkcja – potwierdzenie zwrotne, w przypadku błędu do wartości kodu rozkazu dodana jest wartość 80 HEX.

Adres – potwierdzenie zwrotne.

Dane – zawartość rejestru.

9.3.3 Funkcja 16 – Write Multiple Registers

Funkcja 16 (0x10) Write Multiple Registers ma postać:

|--|

Funkcja – 10 HEX – zapis parametrów urządzenia.

Adres początkowy – adres rejestru, od którego dane mają być zapisywane.

llość punktów – ilość rejestrów dwubajtowych do zapisania.

llość bajtów – ilość bajtów danych.

Dane – 2n bajtów danych do zapisania.

W odpowiedzi przyrząd wysyła ciąg danych postaci:

Funkcja (1B)	Adres pocz.	llość rejestrów
	(2B)	(2B)

Funkcja – potwierdzenie zwrotne, w przypadku błędu do wartości kodu rozkazu dodana jest wartość 80 HEX.

Adres początkowy – potwierdzenie zwrotne.

llość rejestrów – potwierdzenie zwrotne.

9.3.4 Mapa rejestrów do odczytu / zapisu ustawień przyrządu

adr. rej. HEX	adr. rej. DEC	opis	zakres wartości	default	typ	uwagi
data i godzina						
0000	0	data - rok	065535	-	Int (16b)	
0001	1	data - miesiąc	112	-	Int (16b)	
0002	2	data - dzień	131	-	Int (16b)	
0003	3	data - godziny	023	-	Int (16b)	
0004	4	data - minuty	059	-	Int (16b)	
0005	5	data - sekundy	059	-	Int (16b)	
		— • ·				

Rejestry o adresach od 6 do 881 są niejawne

9.4 Odczyt wyników bieżących

9.4.1 Funkcja 04 – Read Input Registers

Funkcja 04 (0x04) Read Input Registers umożliwia odczyt:

- zmierzonych wartości elektrycznych ([mV] dla czujników TC/U; [Ω] dla czujników RTD/R; [mA] – dla przetworników 0/4-20mA);
- zmierzonej temperatury ([°C], [°F]) bądź wielkości wyliczonych z charakterystyki definiowanej;
- wskazań wewnętrznego czujnika temperatury służącego do kompensacji temperatury spoiny odniesienia termopar (temperatury otoczenia).

Funkcja odczytu (04 – Read Input Registers) ma postać:

Funkcja (1B)	Adres pocz. (2B)	llość rejestrów (2B)
--------------	---------------------	-------------------------

Funkcja – 04 HEX – odczyt wyników bieżących.

Adres początkowy – adres rejestru, od którego dane mają być wysyłane. Ilość rejestrów – ilość rejestrów dwubajtowych do odczytania.

W odpowiedzi przyrząd wysyła ciąg znaków w postaci:

Funkcja (1B)	llość bajtów	Dane
	(1B)	(nB)

Funkcja – potwierdzenie zwrotne, w przypadku błędu do wartości kodu rozkazu dodana jest wartość 80 HEX.

Ilość bajtów – n bajtów przesyłanych w odpowiedzi (a nie ilość rejestrów). Dane – n bajtów zawartości rejestrów.

9.4.2 Mapa rejestrów do odczytu wyników bieżących

adr. rej. HEX	adr. rej. DEC	opis	typ
00000001	01	Wartość kanału 1 [mV, Ω, mA] – zależne od typu wejścia Wartość elektryczna, mierzona 1:1	Float (32b)
00020003	23	Wartość kanału 1 - zależne od typu i rodzaju czujnika Wartość mierzona → → korekta "zimnych końców" (termopary), przewodów (RTD) → charakterystyka → wynik	Float (32b)

M-200

00040005	45	Wartość kanału 2 [mV, Ω, mA] - zależne od typu wejścia Wartość elektryczna, mierzona 1:1	Float (32b)
00060007	67	Wartość kanału 2 - zależne od typu i rodzaju czujnika Wartość mierzona → → korekta "zimnych końców" (termopary), przewodów (RTD) → charakterystyka → wynik	Float (32b)
00080009	89	Wartość kanału 3 [Hz, 1/0] - zależne od typu wejścia Wartość elektryczna, mierzona 1:1	Float (32b)
000A000B	1011	Wartość kanału 3 - zależne od typu i rodzaju czujnika Wartość mierzona → charakterystyka → wynik	Float (32b)
000C000D	1213	Temperatura otoczenia – wewnętrzny czujnik [°C]	Float (32b)

9.5 Polecenie diagnostyczne

Przyrząd obsługuje dwie funkcje diagnostyczne:

- zwrot wysłanych danych kontrolnych ("echo"): subfunkcja 0,
- restart opcji komunikacji: subfunkcja 1.

Rozkaz diagnostyka ma postać:

Funkcja	Podfunkcja	Dane
(1B)	(2B)	(2B)

Funkcja – 08 HEX – diagnostyka.

Podfunkcja – tylko 0000 HEX – zwrot otrzymanych danych.

Dane – dwa bajty danych o dowolnej wartości.

W odpowiedzi przyrząd wysyła ciąg znaków w postaci:

Funkcja	Podfunkcja	Dane
(1B)	(2B)	(2B)

Funkcja – potwierdzenie zwrotne, w przypadku błędu do wartości kodu rozkazu dodana jest wartość 80 HEX.

Podfunkcja – potwierdzenie zwrotne.

Dane – zwrot otrzymanych dwóch bajtów danych.